Particulate Protection – Head to garment innovations

Eric van Wely DuPont Global Regulatory Affairs Manager

ISEP 2021 | August 18th, 2021

VOUPONTE Kevlar | Nomex.

DuPont has trusted PPE solutions to help keep workers safe

Thermal Apparel

PPE Solutions made with Nomex[®] fabrics provide inherent FR protection for flame and electric arc hazards

Mechanical

Protection

Kevlar[®] fiber

abrasion, and

Gloves made with

provide excellent

thermal hazards

protection from cut,

Emergency C Response F

From fighting fires, to hazardous material cleanup, DuPont has the expertise and PPE solutions to protect ER workers.

Chemical Protection

Tyvek® & Tychem® garments provide the broadest range of demonstrated protection against chemical hazards.

Controlled Environments

Tyvek[®] IsoClean[®] garments protect sensitive processes from contamination reliably.

Kevlar, | Nomex.

Agenda

- Why are particulates an issue outside of respiratory ?
 - How can they be absorbed?
 - What protection?
 - Cleaning?
- Are standards addressing these issues?
- Should Face and respiratory protection match garment?

Why are particulates protection needs to be extended from respiratory protection?

Kevlar. | Nomex.

Exposure Routes to Toxic Substances

- SCBA protects against inhalation and ingestion
- Gear, gloves and boots provide minimum protection from particle penetration
- Is existing protection from PPE enough?

Kevlar | Nomex

OUPONT

Possible

Skin Absorption Rates vs Protection

Kevlar | Nomex

http://www2.ca.uky.edu/agcomm/pubs/pat/pat6/pat6.pdf

Improved particle-blocking efficiency

Nomex[®] Nano Flex hoods

Vevlar. | Nomex.

Filtration efficiency

Kevlar | Nomex.

8

Particulate blocking test conditions NFPA 1971 standard

8.71.2.2 Where a seam is necessary to create the 380 mm² (15 in, 2) composite sample, a seam shall not be included in the

stitch count of 37 courses/in. ± 2 courses/in. and 21 wales/in. ± 2 wales per in.

8.71.3 Specimens.

8.71.3.1 Particulate-blocking-layer composite specimens shall be tested both before and after being twice subjected to the following conditioning:

- (1) Specimens shall be first subjected twice to the procedure specified in 8.1.2.
- Specimens shall then be conditioned as specified in 8.1.3. (2)
- (3) Specimens shall then be conditioned as specified in 8.1.5.

8.71.3.2 The particulate-blocking test specimens shall be cut into at least a 150 mm (6 in.) square from the preconditioned sample.

8.71.3.2.1 One specimen shall be taken from the center of each preconditioned sample.

8.71.3.3 All specimens to be tested shall be conditioned as specified in 8.1.18.

8.71.3.4 Reference specimens shall be conditioned as specified in 8.1.18.

8.71.3.5 A total of three particulate blocking layer composite specimens shall be tested. One reference specimen shall be tested.

Kevlar | Nomex

8.71.4.1 The test apparatus shall be as specified in ASTM cut conditioned specimen. F2299/F2299M, Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by 8.71.2.3* A reference sample shall be prepared that consists Particulates Using Latex Spheres, with the following modifications: of a composite constructed using two layers of 8.4 oz $/vd^2$ ± 0.4 oz /yd², 100 percent meta-aramid, 1 × 1 rib knit with a (1) A needle valve shall be placed between the filter holder

and the air flow measurement.

8.71.5 Procedure.

8.71.4 Apparatus.

8.71.5.1 Specimens shall be tested in accordance with ASTM F2299/F2299M, Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by Particulates Using Latex Spheres, with the following modifications:

- (1) A reference specimen as specified in 8.71.3 shall be tested prior to the commencement of a series of testing or when the test equipment is modified or repaired.
- (2) The normal outer surface of the particulate-blocking layer shall be mounted such that it faces the upstream side as oriented in the hood.
- (3) If the airflow is met with the specimen in place, the upstream and downstream aerosol counts shall be recorded for a minimum of 5 counts at each particle range using a 1 minute sampling time.
- (4) If the downstream count is less than 100, the sampling time shall be extended until 100 counts are obtained but not longer than 5 minutes.
- (5) If the airflow is not met, the needle valve shall be closed and the OPC exhaust shall be recirculated into the downstream side to maintain a pressure drop of 249 Pa (1 in. H₂O column) across the specimen.

8.71.5.2* The latex sphere sizes used in testing shall range from 0.1 μ m to 1.0 μ m and shall be created using at least eight different known particle sizes from $0.1 \,\mu\text{m}$ to $1.0 \,\mu\text{m}$.

8.71.5.3 The required airflow shall be $1.7 \text{ L/min} \pm 0.1 \text{ L/min}$ in 8.71.5.1(3)

8.71.5.4 The efficiency for each specimen shall be calculated for each sequence for conditioning using the following equation:

[8.71.5.4]

% Efficiency = $\eta = [1 - (\text{downstream counts/upstream counts})] * 100$

FIGURE 8.71.4.1 Diagram for Placement of the **Recirculated Line.**

Proof points - viral and bacterial filtration performance

	PFE (90%)	VFE (≥95%)	BFE (≥95%)
Nomex [®] Nano Flex Hood (Quilted)	>95%	96.8%	97.9%
Nomex [®] Nano Flex Hood (Laminated)	99%	99.8%	99.9%

- **PFE Particulate filtration efficiency**
- **VFE Viral filtration efficiency**
- **BFE Bacterial filtration efficiency**

WPNN Kevlar. | Nomex.

Proof points - hood wear trial

Performance of hoods with and without Nomex[®] Nano Flex. All hoods worn by firefighters in wear trials (15 minutes wood and straw fire, 15 minutes wood and straw fire, 10 minutes wood and synthetic couch fire)

Kevlar | Nomex.

Outside of hybrid hood with and half without Nomex[®] Nano Flex Inside out with Nomex[®] Nano Flex Inside out without Nomex[®] Nano Flex

Proof points - FAST test on hoods with Nomex[®] Nano Flex

- 1 & 3 contained no Nomex[®] Nano Flex
- 2 & 4, with Nomex[®] Nano Flex, dramatically reduced particle penetration
- Particle concentration was below detection limit

Without Nomex[®] Nano Flex

With Nomex[®] Nano Flex

w/o barrier

w/barrier

ier

w/o barrier

w/barrier

Kevlar. | Nomex.

Filtration Efficiency Performance Comparison

Kevlar. | Nomex.

Copyright © 2020. Cannot be used without prior written consent from DuPont.

Thermal protection

Kevlar | Nomex.

Thermal protection performance

RPP at 0.5 cal/cm²/s NFPA 1977

Enhanced RPP by 20%

Wevlar. | Nomex.

Thermal performance on Thermo-Man[®]

DuPont[™] Thermo-Man[®] system

Test standard: ASTM F1930 Exposure time: 10 seconds Heat flux: 2 cal/cm²•s Hood material: PGI Cobra[™] BarriAire[™] made with Nomex[®] Nano Flex

No char, no melt, no drip on Nomex[®] Nano Flex and inner knit layer after 10 sec flashover @ 2 cal/cm²/s

Kevlar | Nomex.

Comfort and durability

Kevlar | Nomex.

Breathability and comfort

	LAM 215	LAM 270	NFPA 1971- 2018
THL (W/m²)	609	600	≥ 205
Air permeability (cfm)	14.3	13.8	N/A

Well exceeded required THL with exceptional air permeability

Kevlar, | Nomex.

Nomex[®] Nano: Improved moisture management

	Absorption time (min)	Water absorbed (grams)	Absorption rate (g/min)	% Evaporation
Traditional Textile	1.4	3.2	0.72	23%
Nomex [®] Nano	0.5	1.3	2.14	43%

High absorption rate to remove sweat quickly

High evaporation rate to drive water out of thermal liner

Low amount of water absorbed to reduce steam burn and gear weight

Validated and confirmed by numbers of wear trials in a variety of locations and climates

OUPONT

Kevlar | Nomex

Durability (wear trials are in progress)

20

Proof points - hood durability of 250X dons and doffs

Hoods with different designs, including quilting and no quilting, from three manufacturers were evaluated at local fire station

Each trial consisted of 25X donning and doffing, followed by one NFPA 1851 recommended washing and drying

Total 10 wear trials, or 250X dons and doffs, were conducted

Filtration blocking efficiency before and after 250X dons and doffs

Proof points dimensional stability of hood after laundries

Dimensional stability with laundry²

Change in dimension³ with laundry cycles at 2 locations

² AATCC TM135 v2004 machine cycle 1 wash temperature 5 drying procedure Ai with hoods as ballast to make the specified 1.8 kg minimum wash load (2.0 kg actual). Water softened to less than 25ppm total hardness.

³ dimension changes are shrinkage reported as a positive quantity

WPNN Kevlar | Nomex.

	Hood wit Nanc	h Nomex® o Flex	Hood with moisture barrier A		Hood with moisture barrier B	
Cycle	Width, A	Height, B	Width, A	Height, B	Width, A	Height, B
5	0%	< 5%	0%	< 10%	< 10%	< 15%
20	0%	< 10%	0%	< 20%	< 20%	< 30%
50	< 5%	< 15%	0%	< 30%	< 30%	< 40%
100	< 5%	< 20%	0%	< 30%	< 35%	< 45%

Standards beyond NFPA 1971

NFPA norms:

- NFPA 1971/2018, FF PPE, turnout gears and fire hood
- NFPA 1977, wildland fire fighter
- NFPA 1851, selection and care

ISO norms:

- ISO 23616 cleaning of firefighter PPE
- ISO 21808 Fire fighter Selection, Use, Care and Maintenance (SUCAM)
- ISO 16073-9 wildland (fire hoods with particulate protection)
- ISO 11999-9 Firehood for turn-out gear to include particulate protection
- ISO 11999-3 Firefighter turn-out gear garments- to include particulate protection

EN norms:

- EN 469 turn-out gear level 1 & 2 (separated membrane requirement)
- EN 13911 firehood (draft with fire hoods with particulate protection)

Kevlar. | Nomex.

Nomex[®] Nano particle barrier wildland firefighting gear specifications

NFPA 1977 – Option for particulate barrier gear for wildland firefighting

Adding particulate blocking option to stop smoke particles from penetrating to a firefighter's body

Blocking performance ≥ 90%

Wevlar. | Nomex.

Nomex[®] Nano particulate blocking wildland firefighter gear - structure

	LAM 215	LAM 270	NFPA 1977-2016
Weight (oz/yd²)	6.5	7.9	N/A
Thickness (mil)	24.8	29.5	N/A
RPP (cal/cm ²)	9.7	11.7	≥7
Breaking strength (lbs)	190	256	N/A
Tear strength (lbs)	56.8	51.3	≥5
Filtration efficiency (%)	>99	>99	N/A
THL (W/m²)	609	600	≥450
Thermal shrinkage (%)	<3	<3	≤10
Laundry shrinkage (%)	<5	<5	≤5
Air permeability (cfm)	14.3	13.7	N/A

Outperformed all performance requirements

Kevlar. | Nomex.

Nomex[®] Nano particulate blocking wildland firefighter gear - structure

Outer shell – Nomex[®] IIIA or Nomex[®] Comfort woven for strength, durability, thermal protection

Middle layer – Nomex[®] Nano for smoke particle protection, breathability

Lining – Nomex[®] knit for comfort and moisture management

Kevlar | Nomex.

Case studies of decontamination

Case 1

Does washing remove particulates from the barrier layer of particulate blocking hoods?

Case 2

Is there a presence of certain chemicals in hoods with Nomex[®] Nano Flex under normal off-fire ground conditions after regular use and washing?

Note: These are case studies on a limited number of samples, not extensive testing.

Kevlar | Nomex.

Case 1 – Visual review before and after washing

A prototype hood with Nomex[®] Nano Flex was worn at a fire training academy for a 40-minute flashover training exercise, then sent to DuPont for testing.

Samples from the hood were viewed under 5x microscopy before and after washing.

Washing method AATCC 135

Kevlar | Nomex

OUPONT

Outer layer of the hood As received After washing **Nomex[®] Nano Flex barrier layer** As received After washing

Case 2 – Analysis of particulate barrier hoods for the presence of 12 chemicals

Three commercially available hoods with Nomex[®] Nano Flex were used **and laundered** by career firefighters for ~9 months, then sent to DuPont for analysis.

Samples from these hoods were analyzed for chemical agents to which firefighters are often exposed.¹

¹As identified in various studies, reports and publications

Chemical agents	Chemical class / type	As received @50C (ppm)	Saline extraction @60C (ppm)	Saline extraction @110C (ppm)	Lower limit of detection (ppm)
Benzo[a]pyrene		ND	ND	ND	3.01
Benzo[a]anthracene		ND	ND	ND	0.85
Dibenzo[a,h]anthracene	PAHs	ND	ND	ND	165.32
Naphthalene		ND	ND	ND	0.03
Anthracene		ND	ND	ND	0.05
di-2-ethylhexyl phthalate (DEHP)		ND	ND	ND	0.04
Benzyl butyl phthalate	Phthalates	ND	ND	ND	0.90
Di-n-octylphthalate		ND	ND	ND	0.04
BDE 47 (2,2,4,4 Tetrabromodiphenyl ether)		ND	ND	ND	0.65
BDE 99 (2,2,4,4,5 Pentabromodiphenyl ether)	PBDEs	ND	ND	ND	1.01
BDE 153 (2,2,4,4,5,5 Hexabromophenyl ether)		ND	ND	ND	1.79
Pentachlorophenol		ND	ND	ND	3.42

Kevlar | Nomex.

Should respiratory protection match that of the garment?

Kevlar | Nomex.

Different types of masks for different protection

	Social distancing	Surgical mask	N95 respirator
Intended protection	Others Public setting	Wearer & others Patients and Caregivers	Wearer Health worker, Firefighter
Filtration	Droplets > 70% @ 3 μm	Droplets and Aerosols Particulate >95% @ 0.3 μm Bacteria & virus >95% @ 3 μm	Aerosols ≥95% at 0.3 µm
Face seal fit	Loose-fitting	Loose-fitting	Tight-fitting
Standards	AATCC, WHO, AFNOR	ASTM 2100, EN 14683	USA: NIOSH (42 CFR 84) EN 149:2001 + A1: 2009
Reusable	Yes	No	No
Flammability test	No	Depends : US-yes, EU-no	Yes

OUPONTE Kevlar Nomex

Meeting Guidance While Avoiding Additional Hazards

If you have identified a FR Hazard and your employees are in FR garments, then they should also be in FR face coverings.

Your Mask Should Match Your Garment

FR face masks

VOUPONTR Kevlar | Nomex.

Guidance and Standards for FR Face Coverings

NFPA 2112 Guidance

- NFPA 2112-2018 amended in June 2020 to include cloth face coverings
- FR cloth face coverings have to be made from NFPA 2112-certified components, so the fabrics have to have been already tested and certified to meet NFPA 2112.
 - The final product (the face mask/covering) does not need to be 3rd party certified itself– selfdeclaration is specified to enable rapid dissemination of products
- Labeling requirements for FR face coverings are reduced compared to other garments due to their size.

https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-ofcodes-and-standards/detail?code=2112

https://www.astm.org/Standards/F1506.htm

ASTM F1506 Guidance

- New edition of ASTM F1506-20a has been published.
- Adds flame-resistant cloth face coverings (FRCFCs) to the scope, with reduced labeling requirements:
 - The tracking identification code
 - "FRCFC ASTM F1506 Not arc flash face protection".

Why?

The key is to consider physical coverage of the face covering.

FR face masks designed to meet CDC guidance and other standards for barrier face coverings are **NOT** designed, tested, and rated to provide head and face protection from arc flash hazards.

References:

The importance of matching your FR PPE

Face mask made from Nomex[®] fabric Remained on manikin with no melting, dripping or afterflame

Cop

100% cotton face mask with carbon filtration

Fell off manikin due to non-FR elastic band and continued to burn

Water-resistant fabric face mask

Fell off manikin due to non-FR elastic band and melted

a-21

Pont

Face Covering Options

Nomex[®] Nano Flex and Nomex[®] Nano face mask

Nomex[®] Nano Flex and Nomex[®] Nano are highly breathable FR materials that deliver superior particle barrier performance without sacrificing comfort.

Nomex® Comfort face masks

The unique fabric technology of **Nomex® Comfort** provides extreme performance in a lightweight, comfortable, highly **breathable**, soft-touch fabric with built-in flame resistance

Face masks made with **Nomex**®

Nomex[®] Fabric provides a tested and proven portfolio of FR solutions that meet or exceed global standards for heat, flame and arc flash protection.

OUPONT Kevlar | Nomex

To learn more: www.dupont.com/personal-protection/fr-face-mask

OUPONT

This information corresponds to our current knowledge on the subject and may be subject to revision as new knowledge becomes available. It is your responsibility to investigate other sources of information on this issue that more appropriately addresses your product and its intended use. DuPont[™] Thermo-Man[®] thermal protection system is based on ASTM Standard F 1930-99 which applies to flame-resistant clothing. These conditions may not be typical of the conditions encountered in actual situations. The results of these tests are only predictions of body burn injury under these specific laboratory conditions. These results do not duplicate or represent garment or fabric performance under actual flash fire conditions. The user is solely responsible for any interpretations of the test data provided by DuPont, and included in this material, and for all conclusions and implications made concerning the relationship between mannequin test data and real life burn injury protection. SINCE CONDITIONS OF USE ARE OUTSIDE OUR CONTROL, DUPONT MAKES NO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE AND ASSUME NO LIABILITY IN CONNECTION WITH ANY USE OF THIS INFORMATION. This data is not intended for use by the user or others in advertising, promotion, publication or any other commercial use and is not a license to operate under, or intended to suggest infringement of, any existing trademarks or patents.

Cannot be used without the express written consent of DuPont.

DuPont TM, the DuPont Oval Logo, and all trademarks and service marks denoted with TM, SM or ® are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted. © 2020 DuPont. (10/20)