ISRP 2002 abstract | Presenter/author | Title | Abstract | |---|------------------------------------|--| | Kranenburg ,
Sanya | Wear Time
and Peak
Airflow | This paper covers a survey conducted over a period of six months at an Australian lead smelter experiencing high lead levels in the blood of employees. | | The S.E.A.
Group, Sydney,
Australia | Monitoring
in a Lead
Smelter | During the project we measured: respirator wear time and airflow through the respirator during various work routines. | | | | Respirator wear time was established for each person over the 6 months. This was then compared with lead blood levels. We found that there was clearly a link between the wear time of a Fan supplied Positive pressure Breath responsive Respirator (FPBR) and reduced lead levels. | To measure airflow we used an Extended Data Logger (EDL) that records the volume and speed of every breath. The information was processed by software that plots the raw real-time breathing data on a graph. The software can also calculate the volume of air drawn through the filters that would have been outside the capacity of a conventional PAPR (had such a device been used). This shortfall must be compensated for; often by inward leakage. During certain work, the overrun was alarmingly high, perhaps explaining the common practice among PAPR-wearers of switching to negative pressure respirators when lead levels in their blood get too high.